Monday, 23 July 2018

1st Lesson Conic Sections

1st Lesson: Conic Sections



The conic sections are the nondegenerate curves generated by the intersections of a plane with one or two nappes of a cone. For a plane perpendicular to the axis of the cone, a circle is produced. For a plane that is not perpendicular to the axis and that intersects only a single nappe, the curve produced is either an ellipse or a parabola (Hilbert and Cohn-Vossen 1999, p. 8). The curve produced by a plane intersecting both nappes is a hyperbola (Hilbert and Cohn-Vossen 1999, pp. 8-9

GENERAL EQUATION
Ax2­+Bxy+Cy2+Dx+Ey+F=0


THE DISCRIMINANT FORMULA FOR CONIC SECTION

 b2 – 4ac > 0 HYPERBOLA
b2  - 4ac = 0 PARABOLA
b2  - 4ac <  0 CIRCLE
         where A = C B = 0
b2  - 4ac <  0 ELLIPSE
         where Ac B=0

EXAMPLES:
1. G.E
 2y2 + 20x + 2y – 1 = 0
 A= 0  B=  0  C= 2
b2 – 4ac = (0)0 – 4 (0)(2)
                = 0 – 0
                = 0 PARABOLA

S.F : (h,k) (y-k)2 = 4a(x-h)
2y2 + 20x + 12y – 1 = 0
2y2 + 12y       20x – 1 = 0
2(y2 + 6y + 9) = -20x + 1
 2(y+3)2  = -20x + 1 + 9
    2
(y+3)2 = -10x + 10
S.F = (y+3)2 = -10x + 10

h = 5 k = 3

 2. G.E
6x2 – 5y + 36x + 20y – 16 = 0
A= 6  B= 0  C= -5
b2 – 4ac = (0)2 – 4 (6)(-5)
= 120 < 0  HYPERBOLA

S.F
6x2 + 36x ____ -5y + 20y – 16 = 0
6(x2+6x+9) – 5(y2 – 4y + 4)= 16 + 9 + 4
6(x+3)2 – 5(y-2)2 = 29
              30
(x +3)2 – (y-2)2
     5            6
   10          10
(h = 3) (k= -2)